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Commit-Based Class-Level Defect Prediction for Python Projects

Khine Yin MON®, Masanari KONDO'', Nonmembers, Eunjong CHOI''", and Osamu MIZUNO''', Members

SUMMARY  Defect prediction approaches have been greatly contribut-
ing to software quality assurance activities such as code review or unit
testing. Just-in-time defect prediction approaches are developed to predict
whether a commit is a defect-inducing commit or not. Prior research has
shown that commit-level prediction is not enough in terms of effort, and a
defective commit may contain both defective and non-defective files. As
the defect prediction community is promoting fine-grained granularity pre-
diction approaches, we propose our novel class-level prediction, which is
finer-grained than the file-level prediction, based on the files of the commits
in this research. We designed our model for Python projects and tested it
with ten open-source Python projects. We performed our experiment with
two settings: setting with product metrics only and setting with product
metrics plus commit information. Our investigation was conducted with
three different classifiers and two validation strategies. We found that our
model developed by random forest classifier performs the best, and com-
mit information contributes significantly to the product metrics in 10-fold
cross-validation. We also created a commit-based file-level prediction for
the Python files which do not have the classes. The file-level model also
showed a similar condition as the class-level model. However, the results
showed a massive deviation in time-series validation for both levels and the
challenge of predicting Python classes and files in a realistic scenario.

key words: defect prediction; fine-grained prediction, empirical software
engineering, mining software repositories

1. Introduction

Software developers continually modify the source code
to fix the existing software defects and add new features.
However, these modifications usually lead to the introduc-
tion of new defects, which can decrease the quality of the
software [1]. Software quality assurance activities (SQA)
are necessary to guarantee the achievement of premium
software products. Nevertheless, these kinds of activi-
ties are challenging due to the balance between limited re-
sources and time-to-market requirements [2]. Defect predic-
tion technology arises to assist SQA in predicting the soft-
ware’s risky parts. Therefore, the practitioners can allocate
their quality assurance efforts more effectively, e.g., testing
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and code reviews [3].

In 2019, Pascarella et al. claimed that the commit-level
defect prediction is coarse because a commit can contain
multiple files, and all the files within a defective commit
might not be defect-prone [4]. Therefore, they investigated
for the proportion of the actual defective files in a defec-
tive commit and reported that almost 43% of the changed
files within a defective commit are defective. Further, they
mentioned that 42% of defective commits were composed of
a mixture of both defective and non-defective files in their
studied subjects. Therefore, they proposed a two-phase fine-
grained just-in-time prediction model, which identifies the
defect-prone files within a defective commit. However, in
a real-world scenario, the file-level is still coarse. A file
can have multiple classes, such as the Math project in the
Defects4j dataset, and the developers have to take a con-
siderable amount of time to inspect all the codes in the en-
tire file [5]. The finer-grained level such as class-level and
function-level than the file-level should be oriented for this
approach. Hence, our ultimate goal is to develop a finer-
grained two-phase defect prediction, which uses the commit
information.

To this aim, we first examined which granularity, i.e.,
which level of defect prediction, was appropriate for our
approach. We surveyed the popularity among fine-grained
models, and our survey result led us to choose the class-level
granularity to build our intended model. Subsequently, we
proposed our novel commit-based class-level defect predic-
tion approach and experimented with two settings: product
metrics only approach and product metrics plus commit in-
formation approach. We experimented with our study with
three classifiers, random forest [6], logistic regression [7],
and support-vector machine [§8], and validated with two
validation strategies, 10-fold cross-validation [9] and time-
series validation [10]. We also developed a commit-based
file-level approach for the Python files that do not contain
classes. Finally, we compared the results. The comparison
results described that random forest outperforms all the clas-
sifiers, and the class-level defect prediction approach can be
improved by adding commit information when we validate
with 10-fold cross-validation. However, this finding has a
significant difference when we validate with a real-time sce-
nario and shows space for contributing more to the area of
predicting Python classes and files with time-series data.

The three main contributions of this paper are as fol-
lows:

- We have proposed the commit-based class-level and
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file-level defect prediction model (i.e., the classes and the
files are extracted from the commits) and tested the model
with the two experimental settings (i.e., testing with only
product metrics setting and both the commit information and
the product metrics)

- We have evaluated and compared these models with
different classifiers and different validation strategies and re-
ported the result.

- We have performed the systematic literature review
among the granularity of the fine-grained defect prediction
models.

Structure of the paper: Sect. 2 reports the background
of this study. Section 3 is the methodology section which
includes an explanation of the research questions, the liter-
ature review of fine-grained prediction models, the process
of our approach, and the metrics used in this study. Sec-
tion 4 describes the detailed information of studied subject
systems and an overview of the experiment. Section 5 is
the result section. Section 6 explains the threats that might
influence our findings. Section 7 concludes the paper.

2. Background
2.1 Defect Prediction

Defect prediction approaches can be divided into two cate-
gories: long-term prediction approaches and short-term pre-
diction approaches [4]. Long-term prediction approaches
analyze the information of previous releases and predict the
defectiveness of future releases. One of the significant lim-
itations of the long-term prediction approach is that predic-
tions are made very late in the software development cy-
cle. Meanwhile, the short-term prediction approaches pre-
dict whenever the code is changed and saved, such as ses-
sion time [11] or commit time, as well as provide immediate
feedback for the defect [4].

2.2 Just-in-Time Defect Prediction

Just-in-time defect prediction models are included in the
short-term prediction category and assist in making a pre-
diction about the defectiveness of a commit. However, one
of the drawbacks of the just-in-time prediction models is that
when any code in a commit relates to the defects, the whole
commit is treated as the defective commit. Consequently,
the developer has to inspect all codes within a commit. Re-
cently, the researchers addressed this situation by proposing
models which can give further investigation about the poten-
tial defectiveness of the codes with a commit [4], [12], [13].

2.3 Defect Prediction Size Granularity

Widespread studies of defect prediction approaches are pro-
posed based on machine learning techniques. The main-
stream process of machine learning-based defect prediction
approaches generally includes generating instances from
software archives, labeling these instances, preprocessing
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Fig.1  The granularity of defect prediction models.

(optional), model training, and finally predicting the new
instances by the trained model [14]. An instance can be a
subsystem, a component, a file, a class, a function, a line, or
a token, as Fig. 1. The coarsest granularity can be denoted
as subsystem level, while the finest is the token. Recently,
the fine-grained granularity approaches, such as class-level,
method-level, and line-level, have been promoted because
some studies proved that the fine-grained defect prediction
approaches are more cost-effective than the coarse-grained
ones [5], [15].

3. Methodology

This section presents our research questions, literature re-
view about fine-grained defect prediction models, outlines
of our method, independent variables, and studied classi-
fiers.

3.1 Research Questions

This research aims to build a two-phase fine-grained defect
prediction model that uses the commit information. The
prior study proposed a concept of commit-based file-level
defect prediction, which identifies the defect-prone files
within a commit [4]. Nevertheless, the effort to inspect all
the non-defective and defective code elements within a file
should be considered. However, it is unclear which granu-
larity is popular and preferable in the within-project defect
prediction research community for our proposed two-phase
fine-grained prediction approach. For that reason, we de-
cided to survey the popular granularity of fine-grained de-
fect prediction models, and we set our first question as fol-
lows. In this RQ, we summarize the size of the granularity
of the prediction target in prior studies.

e RQ 1: Which granularity level of fine-grained de-
fect prediction does the research community of the
defect prediction orient the most?

Based on the answer to research question 1, we built our
prediction model. Finally, we measured our model’s perfor-
mance and represented the results as the answer to research
question 2.

e RQ 2: How well can our proposed two-phase model
predict for a class of a commit?
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Our study aims to exploit the commit information for
the fine-grained defect prediction model. According to
the result of RQ1, we chose the class-level as the target
fine-grained granularity of our study. However, our target
projects are Python and there are Python files that do not
have classes. Therefore, we added a commit-based file-level
defect prediction and compared it with our commit-based
class-level model for defect prediction in Python.

e RQ 3: How is the performance of commit-based
class-level defect prediction when comparing to that
of commit-based file-level defect prediction?

3.2 Literature Review about the Most Popular Fine-
Grained Defect Prediction Models for within Project
Area

To gain insight knowledge about defect prediction granu-
larity and find out the most popular granularity in the de-
fect prediction community, we performed a literature re-
view. Since this study was not intended to become a sys-
tematic literature review for a wide area of defect predic-
tion research field, we defined the area scope of our liter-
ature review. In Pascarella et al.’s approach[4], they set
file-level as the fine-grained granularity, and we aimed to
improve their approach by developing a finer-grained pre-
diction model than the one of their model. Therefore, we
counted for class, function, method, line, and token levels,
that are finer than the file-level. We searched the papers in
the following six venues, the premier publication venues in
the software engineering research community, from 2015 to
2020. Among these venues, the two venues are for journals,
and the rest are for conferences.

o ASE - IEEE/ACM International Conference on Auto-
mated Software Engineering

o ESEC/FSE - ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of
Software Engineering

e ICSE - ACM/IEEE International Conference on Soft-
ware Engineering

e SANER - IEEE International Conference on Software
Analysis, Evolution and Reengineering

e TOSEM - ACM Transactions on Software Engineering
and Methodology

e TSE - IEEE Transactions on Software Engineering

We used the keywords “defect,” “bug,” “fault,” and
“prediction” to search in IEEE/ACM digital libraries. We
filtered the relevant papers by reading the titles, abstract,
and keywords and collected the titles of all resulting pa-
pers. Since our goal is to build a prediction model for
within-project setting by the machine learning technique,
we excluded some papers such as papers which are us-
ing cross-project settings [16]-[19], and deep learning tech-
niques. Moreover, we skipped the papers that are not avail-
able for the full text. Finally, we downloaded the full text of
the rest papers and found out the granularity of the predicted
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Fig.2  66.7% belong to class, 13.3% belong to function, 13.3% belong
to method, and 6.7% belong to line levels.

part.

Figure 2 shows the result of our literature review. We
finally found 15 papers. Among them, 66.7% (10 papers)
are class-level, 13.3% (2 papers) are function-level, 13.3%
(2 papers) are method-level, and 6.7% (1 paper) is line-level.
As we discovered the most contributed granularity of defect
prediction models, we recognized class-level granularity as
the answer to our first research question. Thus, we built our
proposed model for class-level defect prediction granularity.

In addition, we also discovered that the experimented
systems of the observed ten class-level defect prediction
papers are mainly Java projects [20]-[29]. Despite the in-
creasing popularity of the Python programming language in
various domains such as machine learning and deep learn-
ing [30], the defect prediction research community has not
paid attention to Python projects, to our knowledge. To rem-
edy this, we applied Python projects in our study.

RQ 1: The class level is the most popular granularity
among the fine-grained prediction models from 2015
to 2020.

3.3 Commit-Based Class-Level and File-Level Defect
Prediction

Our commit-based class/file-level defect prediction model
consists of two phases: (1) the commit-level defect pre-
diction phase and (2) the class/file-level defect prediction
phase. We identified defective commits in the first phase
and identified defective classes/files on the defective com-
mits in the second phase. We describe the steps to build our
model (Fig. 3) as follows.

1. We collected all the defective and non-defective com-
mits from a target project.

2. All the classes of the modified files of the commits
were extracted.

3. Product metrics of classes and files, and commit infor-
mation (e.g., number of added lines) were calculated as
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Fig.3  The process flow of our commit-based class-level defect predic-
tion approach.

the studied metrics.

4. We made a dataset that contains both commit informa-
tion and product metrics.

5. Our model was trained and tested with the gained
dataset.

Rosen et al. proposed a tool, Commit Guru, to auto-
matically identify and predict the defect-prone commits on
projects [31]. Our first step used Commit Guru [31] to ex-
tract defective and non-defective commits for such projects.

Our second step started with extracting the modified
files of the projects. We cloned GitHub repositories for each
project. We applied PyDiriller [32] to each commit of the
cloned repository to get modified files. We parsed all classes
in the modified files using an AST tool of Python [33].

In the third step, we calculated product metrics for each
modified file and class by Radon [34]. Also, we got the met-
rics of commit information from each commit with Commit
Guru. Product metrics and the commit information are de-
scribed in Sect. 3.4.

In the fourth step, a new dataset was acquired by con-
catenating the calculated product metrics with the commit
information for modified files and classes, respectively.

Finally, we trained and tested classifiers (described
in Sect.3.5) based on the dataset. For the commit-based
class-level defect prediction, we used the dataset in which
product metrics were computed from modified classes; for
the commit-based file-level defect prediction, we used the
dataset in which product metrics were computed from mod-
ified files. For both cases, we built the defect prediction
model to identify defective classes/files based on the com-
mit information.

3.4 Independent Variables

In this paper, we prepared two sets of independent variables:
product metrics and commit information. The independent
variables are for extracting and measuring the characteris-
tics of the classes/ files in a commit. In this study, we con-
sidered the most basic product metrics which can show the
minimum performance of our model. For the commit infor-
mation, we adopted the widely-used 14 change-level metrics
proposed by Kamei et al. [3]. The metrics included in Table
1 and Table 2 show the overview. The details are as follows.

Product metrics: LOC [35], Halstead [36], and McCabe’s
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Table 1  List of the product metrics.
Acronym Name
loc The number of lines of code (total)
lloc The number of logical lines of code
sloc The number of source lines of code (not necessarily
corresponding to the LLOC)
comments The number of Python comment lines
multi The number of lines which represent multiline strings

single_comments

The number of lines which are just comments with no
code

blank The number of blank lines (or whitespace-only ones)
hl the number of distinct operators

h2 the number of distinct operands

N1 the total number of operators

N2 the total number of operands

h the vocabulary, i.e. h1 + h2

N the length, i.e. N1 + N2

calculated_length hl *log2(hl) + h2 * log2(h2)

volume V =N *log2(h)

difficulty D=h1/2*N2/h2

effort E=D*V

time T =E/ 18 seconds

bugs B =V /3000 - an estimate of the errors in the imple-

mentation

real_complexity

Cyclomatic Complexity value of a piece of code

Table 2  List of the commit information variables.

Acronym Name

NS Number of modified subsystems

ND Number of modified directories

NF Number of modified files

Entropy Distribution of modified code across
each file

LT Lines of code added

LA Lines of code deleted

LD Lines of code in a file before a
change

FIX Whether or not the change is a de-
fect fix

NDEV The number of developers that
changed the modified files

AUE The average time interval between
the last and the current change

NUC Number of unique changes to the
modified files

EXP Developer experience

REXP Recent developer experience

SEXP Developer experience on a subsystem

Cyclomatic Complexity [37] are included in this set. These
metrics are extracted with the assistance of the Python tool,
Radon'. Table 1 reports the information of these metrics.

Commit information: Just-in-time defect prediction mod-
els usually use the commit information; therefore, we used
the following listed just-in-time defect prediction metrics [3]
as the commit information: NS, ND, NF, Entropy, LT, LA,
LD, FIX, NDEV, AGE, NUC, EXP, REXP, and SEXP. The
metrics and their description are listed in Table 2.

"https://radon.readthedocs.io/
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Table 3  Characteristics of the subject software systems.

Systems # of Commits % of Defect-prone Commits  # of Classes  # of Python Files  # of Classes Per Python File
ADSM 3493 24% 229 169 1.36
Axelrod 5539 24% 737 185 3.98
Bitmask_client 3055 18% 188 162 1.16
Galicaster 1786 20% 100 147 0.68
Lisa 3876 18% 1251 502 2.49
Parsl 3724 32% 159 398 0.40
PyBitmessage 2595 30% 473 376 1.26
PythonRobotics 1700 20% 98 214 0.46
TADbit 2503 42% 22 100 0.22
Toil 5649 36% 328 261 1.26

3.5 Studied Classifiers

To build the defect prediction model, we used the following
three classifiers: random forest (RF) [6], logistic regression
(LR) [7], and support-vector machines (SVM) [8]. These
classifiers are applied and expressed as the popular machine
learning models for defect prediction in the prior studies [3],
[4], [23], [38]. We exploited the Weka toolkit [39] to use
these classifiers.

4. Experimental Setup
4.1 Subject Systems

Overall 480 analyzed repositories were available on Com-
mit Guru on July 1, 2022, which were also available on
GitHub. We only chose 56 Python projects from these se-
lected, contributing to more than 70% of Python or jupyter
notebook codes. From these projects, we filtered out the
projects that did not meet the following criteria: the projects
1. should have over 1000 commits, and 2. should include
over 10% of defect-prone commits. After filtering with
these two criteria, we ended up with 33 projects. Finally,
we randomly selected ten projects, the same as the existing
work [4]. The selected projects are listed in Table 3. We
selected the Python projects for this study because of the
need for more research contributing to the area of Python
programming language [40]-[42]. In Table 3, we mention
the list of the systems with the number of commits, the per-
centage of defect-prone commits, the number of classes, the
number of Python files, and the average number of classes
per Python file. In this study, we particularly define .py or
.ipynb as the Python files.

4.2 Overview of Experiment

We trained our defect prediction models with two differ-
ent settings based on the two independent metrics sets: 34-
attribute setting (commit information + product metrics) and
20-attribute setting (product metrics). Prior studies do not
use the commit information to identify defective classes.
Hence, we studied these settings to clarify the impact of the
commit information on identifying defective classes.

To validate the defect prediction model, we used two

validation strategies: the 10-fold cross-validation [9] and the
time-series validation [10].

The 10-fold cross-validation was applied as the valida-
tion strategy, as in the prior studies [3], [13]. The 10-fold
cross-validation randomly divides the original dataset into
ten equal-sized folds. Of the ten folds, one fold is used as
the validation data for testing the model, and the remaining
nine folds are for training data. The process is repeated ten
times, with each fold is applied exactly one time as the val-
idation data. Afterward, the accuracy result is taken as the
mean value of the ten times validation.

We also experimented with our models with a time-
series validation strategy. We sorted the data rows in our
datasets by date and time and divided the datasets in a 7:3
ratio. The training data is 70%, and the testing data is the
rest 30%. For example, for the TADDit project, the over-
all project data is available from 2012-10-24 to 2021-11-03.
After sorting and dividing the TADbit dataset, the testing
data is from 2019-05-29 to the end, and the training data
is from the start to 2019-05-28. In addition, we changed
the labels of the rows of the training data set referring to
the prior study [10]. The commits become defect-inducing
commits because of the defect-fixing commits. Suppose the
defect-fixing commits of the defect-inducing commits are
found after the period of the training data set. In that case,
these defect-inducing commits should not be regarded as
defect-inducing commits. These commits should be treated
as clean ones because their defects are not yet found. Hence,
this validation simulates a more realistic scenario than the
10-fold cross-validation.

5. Result

5.1 RQ 2: How Well Can Our Proposed Two-Phase Model
Predict for a Class of a Commit?

We evaluated the performance measures of our prediction
model, which was trained and tested by the random forest
(RF), logistic regression (LR), and support-vector machines
(SVM) with 10-fold cross-validation and time-series vali-
dation, as described in Sect.4.2. Table 4 and Table 5 pro-
vide F-measures and AUC-ROC results of our models with
the product metrics (20-attribute setting) and the commit in-
formation and product metrics (34-attribute setting), respec-
tively. According to the performance of all classifiers, the
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Table 4  Performance result of the class-level prediction model (20-
attribute setting).

Projects Classifiers 10-Fold Cross Validation Time-Series Validation
F-measure | AUC-ROC | F-measure | AUC-ROC
LR 0.560 0.659 0.653 0.492
ADSM RF 0.693 0.766 0.649 0.496
SVM 0.685 0.638 0.650 0.499
LR 0.454 0.529 0.320 0.523
Axelrod RF 0.557 0.567 0.392 0.492
SVM 0.525 0.530 0.324 0.492
LR 0.437 0.526 0.400 0.491
Bitmask client | RF 0.545 0.543 0.438 0.464
SVM 0.520 0.522 0.533 0.519
LR 0.518 0.541 0.533 0.532
Galicaster RF 0.557 0.583 0.591 0.498
SVM 0.536 0.540 0.388 0.502
LR 0.487 0.545 0.558 0.504
Lisa RF 0.641 0.659 0.570 0.426
SVM 0.616 0.587 0.564 0.503
LR 0.459 0.528 0.401 0.506
Pars] RF 0.582 0.604 0.418 0.488
SVM 0.577 0.557 0.414 0.493
LR 0.480 0.531 0.373 0.475
PyBitmessage RF 0.576 0.588 0.435 0.479
SVM 0.554 0.556 0.383 0.499
LR 0.504 0.561 0.525 0.518
PythonRobotics | RF 0.553 0.599 0.516 0.483
SVM 0.543 0.544 0.552 0.504
LR 0.611 0.632 0.523 0.479
TADbit RF 0.665 0.651 0.550 0.541
SVM 0.641 0.565 0.297 0.493
LR 0.579 0.537 0.429 0.495
Toil RF 0.644 0.605 0.632 0.495
SVM 0.627 0.531 0.637 0.506
LR 0.509 0.559 0.472 0.502
Mean RF 0.601 0.616 0.519 0.486
SVM 0.582 0.557 0.474 0.501
Table 5  Performance result of the class-level prediction model (34-

attribute setting).

10-Fold Cross Validation Time-Series Validation

Projects Classifiers F-measures | AUC-ROC | F-measures | AUC-ROC
LR 0.708 0.784 0.691 0.584
ADSM RF 0.989 0.999 0.590 0.395
SVM 0.870 0.824 0.217 0.459
LR 0.686 0.735 0.553 0.624
Axelrod RF 0.985 0.999 0.438 0.606
SVM 0.766 0.745 0.406 0.511
LR 0.688 0.759 0.517 0.642
Bitmask _client RF 0.974 0.996 0.502 0.697
SVM 0.678 0.670 0.546 0.543
LR 0.725 0.788 0.520 0.454
Galicaster RF 0.896 0.950 0.521 0.574
SVM 0.461 0.541 0.488 0.423
LR 0.753 0.802 0.695 0.602
Lisa RF 0.987 0.999 0.559 0.632
SVM 0.720 0.683 0.455 0.509
LR 0.710 0.776 0.335 0.525
Pars] RF 0.925 0.979 0.330 0.581
SVM 0.693 0.672 0.346 0.486
LR 0.677 0.758 0.409 0.501
PyBitmessage RF 0.917 0.976 0.478 0.386
SVM 0.587 0.614 0.531 0.530
LR 0.762 0.849 0.553 0.412
PythonRobotics | RF 0.885 0.955 0.539 0.505
SVM 0.554 0.586 0.537 0.498
LR 0.809 0.823 0.470 0.475
TADbit RF 0.816 0.908 0.425 0.369
SVM 0.605 0.538 0.214 0.484
LR 0.657 0.713 0.393 0.445
Toil RF 0.973 0.997 0.307 0.405
SVM 0.772 0.677 0.306 0.477
LR 0.718 0.779 0.514 0.526
Mean RF 0.935 0.976 0.469 0.515
SVM 0.671 0.655 0.405 0.492

random forest gave us the highest result for 10-fold cross-
validation. Average F-measure and AUC-ROC values were
over 0.935 and 0.976 for the 34-attribute setting, while these
values were 0.601 and 0.616 for the 20-attribute setting, re-
spectively.

In 10-fold cross-validation, all classifiers increased
their performance by adding the commit information (i.e.,
changing from the 20-attribute setting to the 34-attribute set-
ting). Indeed, as described above, the average AUC-ROC
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value for RF rose to 0.976 from 0.616. Also, the average
AUC-ROC value rose to 0.779 from 0.559 for LR and 0.655
from 0.557 for SVM. We observed a similar tendency in
terms of Fl-score.

Nevertheless, in the time-series validation, all classi-
fiers show an average AUC-ROC of around 0.5, which is the
worst performance in AUC-ROC. Even if using the commit
information, the result is almost the same. This experiment
shows that our commit-based class-level defect prediction
model works well in a 10-fold validation strategy but un-
derperforms in the time-series validation, which is a more
realistic scenario.

The proposed commit-based class-level defect pre-
diction model with RF performs better than the other
classifiers in the 10-fold cross-validation. Also,
adding the commit information increases the pre-
diction performance. However, the proposed model
does not work well in a realistic scenario (i.e., the
time-series validation).

5.2 RQ 3: How is the Performance of Commit-Based
Class-Level Defect Prediction When Comparing to
That of Commit-Based File-Level Defect Prediction?

Tables 6 and 7 show the performance of the commit-based
file-level defect prediction model with the 20-attribute set-
ting and the 34-attribute setting, respectively. We achieved
the same conclusion as the ones in RQ2. For example, RF
achieves the best performance compared to the other clas-
sifiers in the 10-fold cross-validation. Importantly, even if
we evaluate the commit-based file-level defect prediction
model, which is a coarser grain than class-level, the predic-
tion performance on the time-series validation is the worst
in terms of AUC-ROC. Hence, this result and the result in
RQ2 imply that the commit-based class/file-level defect pre-
diction model needs more future work to identify defective
classes/files in Python in a realistic scenario.

The proposed commit-based file-level defect predic-
tion model shows the same tendency as the commit-
based class-level defect prediction model. Especially
the model shows the worst performance in the time-
series validation. Hence, identifying defective files/-
classes in Python is still a challenging task in defect
prediction. Future studies are necessary on this chal-
lenge.

6. Threats to Validity
6.1 External Validity

We experimented with ten open-source Python projects with
different ratios of defect-prone commits, number of overall
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Table 6 Performance result of the file-level prediction model (20-
attribute setting).

Projects Classifiers 10-Fold Cross Validation Time-Series Validation
F-measure | AUC-ROC | F-measure | AUC-ROC
LR 0.550 0.590 0.623 0.537
ADSM RF 0.602 0.650 0.632 0.537
SVM 0.571 0.570 0.559 0.476
LR 0.469 0.538 0.263 0.518
Axelrod RF 0.550 0.560 0.394 0.502
SVM 0.550 0.542 0.297 0.506
LR 0.525 0.552 0.455 0.501
Bitmask client RF 0.556 0.560 0.463 0.474
SVM 0.504 0.511 0.455 0.460
LR 0.551 0.572 0.516 0.533
Galicaster RF 0.561 0.594 0.514 0.494
SVM 0.536 0.540 0.527 0.481
LR 0.621 0.657 0.558 0.623
Lisa RF 0.645 0.694 0.394 0.438
SVM 0.571 0.577 0.387 0.501
LR 0.511 0.551 0.327 0.473
Pars] RF 0.592 0.599 0.365 0.520
SVM 0.582 0.548 0.307 0.501
LR 0.502 0.510 0.354 0.470
PyBitmessage RF 0.557 0.570 0.370 0.466
SVM 0.548 0.546 0.370 0.466
LR 0.531 0.550 0.510 0.502
PythonRobotics | RF 0.537 0.572 0.545 0.500
SVM 0.506 0.512 0.510 0.496
LR 0.657 0.662 0.467 0.446
TADbit RF 0.600 0.622 0.247 0.357
SVM 0.591 0.516 0.377 0.514
LR 0.568 0.566 0.613 0.510
Toil RF 0.672 0.637 0.198 0.488
SVM 0.653 0.566 0.126 0.500
LR 0.548 0.575 0.469 0.511
Mean RF 0.587 0.606 0.412 0.478
SVM 0.561 0.543 0.391 0.490
Table 7  Performance result of the file-level prediction model (34-

attribute setting).

Projects Classifiers 10-Fold Cross Validation Time-Series Validation
F-measure | AUC-ROC | F-measure | AUC-ROC
LR 0.685 0.750 0.626 0.537
ADSM RF 0.799 0.884 0.638 0.563
SVM 0.454 0.546 0.493 0.571
LR 0.683 0.734 0.368 0.393
Axelrod RF 0.889 0.955 0.592 0.697
SVM 0.457 0.523 0.258 0.500
LR 0.671 0.719 0.536 0.598
Bitmask _client RF 0.880 0.939 0.443 0.635
SVM 0.397 0.502 0.526 0.532
LR 0.722 0.778 0.524 0.471
Galicaster RF 0.877 0.938 0.519 0.526
SVM 0.408 0.517 0.529 0.502
LR 0.746 0.809 0.396 0.504
Lisa RF 0.855 0.916 0.414 0.454
SVM 0.390 0.503 0.435 0.439
LR 0.702 0.769 0.309 0.528
Parsl RF 0.843 0.924 0.316 0.506
SVM 0.493 0.510 0.344 0.510
LR 0.688 0.746 0.376 0.521
PyBitmessage RF 0.832 0916 0.376 0.405
SVM 0.422 0.511 0.342 0.482
LR 0.743 0.841 0.496 0.361
PythonRobotics | RF 0.819 0.908 0.497 0.424
SVM 0.450 0.535 0.491 0.480
LR 0.759 0.806 0.528 0.537
TADbit RF 0.837 0.886 0.400 0.433
SVM 0.573 0.520 0.550 0.556
LR 0.678 0.724 0.596 0.487
Toil RF 0.867 0.942 0.136 0.346
SVM 0.602 0.526 0.125 0.485
LR 0.708 0.768 0.476 0.494
Mean RF 0.850 0.921 0.433 0.499
SVM 0.465 0.519 0.409 0.506

commits, and scope of the projects. Nevertheless, the results
may differ when our approaches are applied to commercial
projects, larger or smaller systems. Future studies need to
investigate whether our results generalize to other different
projects. In addition, the results gained by using the auto-
mated tools for this experiment may vary according to their
versions. Future work is necessary to analyze whether the
same effect can be obtained on this research’s approaches.
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6.2 Internal Validity

The data for the independent and dependent variables that
we used in this research relied on the dumped data of Com-
mit Guru[31] and the processed results of the automated
tools such as Radon [34] and PyDriller [32]. Although our
results were concluded with several repeated experiments,
the verification of the scripts of the automated tools and
data was not performed in this research. Furthermore, we
completed our performance results in precision, recall, F-
measure, and AUC-ROC. Future studies, which have differ-
ent objectives, should analyze our approaches’ performance
on other performance measures.

7. Conclusion

Just-in-time defect prediction approaches are practical and
useful because of their ability to predict defects in the short-
term and provide feedback immediately. However, a com-
mit may contain multiple files, and a file may include many
classes. For this reason, we proposed a commit-based class-
level defect prediction approach for Python projects and an-
alyzed our approach with two different settings. The main
contributions of this research are:

1. A literature review about the most popular fine-grained
defect prediction models for within-project area.

2. Commit-based class and file defect prediction mod-
els with two settings, and performance comparison for
these settings.

3. Performance comparison for different classifiers and
validation strategies for the commit-based class-level
and file-level defect prediction models.

Our future work includes analyzing the reasons caus-
ing the worst performance for the commit-based class/file-
level defect prediction model in a real-time scenario, repli-
cating our study on a larger or smaller set of systems and in-
dustrial projects, and experimenting with different program-
ming languages. Future studies can be conducted (i) to eval-
uate our study with different performance measures, (ii) to
train and test with other metrics, (iii) to investigate the effort
saved by using our study, and (iv) to apply in the context of
cross-project defect prediction.
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