
MSCCD: Grammar Pluggable Clone Detection Based on ANTLR
Parser Generation

Wenqing Zhu
Nagoya University

Nagoya, Aichi, Japan

zhuwqing1995@ertl.jp

Norihiro Yoshida
Nagoya University

Nagoya, Aichi, Japan

yoshida@ertl.jp

Toshihiro Kamiya
Shimane University

Matsue, Shimane, Japan

kamiya@cis.shimane-u.ac.jp

Eunjong Choi
Kyoto Institute of Technology

Kyoto, Kyoto, Japan

echoi@kit.ac.jp

Hiroaki Takada
Nagoya University

Nagoya, Aichi, Japan

hiro@ertl.jp

ABSTRACT

For various reasons, programming languages continue to multiply

and evolve. It has become necessary to have a multilingual clone

detection tool that can easily expand supported programming lan-

guages and detect various code clones is needed. However, research

on multilingual code clone detection has not received sufficient

attention. In this study, we propose MSCCD (Multilingual Syntactic

Code Clone Detector), a grammar pluggable code clone detection

tool that uses a parser generator to generate a code block extractor

for the target language. The extractor then extracts the semantic

code blocks from a parse tree. MSCCD can detect Type-3 clones at

various granularities. We evaluated MSCCD’s language extensibil-

ity by applying MSCCD to 20 modern languages. Sixteen languages

were perfectly supported, and the remaining four were provided

with the same detection capabilities at the expense of execution

time. We evaluated MSCCD’s recall by using BigCloneEval and

conducted a manual experiment to evaluate precision. MSCCD

achieved equivalent detection performance equivalent to state-of-

the-art tools.

CCS CONCEPTS

• Software and its engineering→ Software maintenance tools.

KEYWORDS

Code Clone, Parser Generator, Clone Detection, Syntactic Analysis,

Programming Language

ACM Reference Format:

Wenqing Zhu, Norihiro Yoshida, Toshihiro Kamiya, Eunjong Choi, and Hi-

roaki Takada. 2022. MSCCD: Grammar Pluggable Clone Detection Based

on ANTLR Parser Generation. In 30th International Conference on Program

Comprehension (ICPC ’22), May 16–17, 2022, Virtual Event, USA. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3524610.3529161

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9298-3/22/05. . . $15.00
https://doi.org/10.1145/3524610.3529161

1 INTRODUCTION

Programming languages (hereinafter referred to as "languages")

are advancing rapidly, and various languages are being developed

and used for different purposes. Even within the same language,

the syntax is frequently updated. For example, Typescript has been

updated at least 26 times (see Figure 1), including minor updates,

since its first release in 2012. This is a blessing for practitioners

who are free to choose the latest language for their purposes.

Code clone detection [15, 29, 32], a successful application of

program analysis, is required to deal with a wide variety of lan-

guages and grammar definitions by practitioners [7, 33]. Code clone

researchers frequently receive requests for clone detection tools

that support new languages and grammatical definitions in their

industry-academia collaboration activities.

However, it is unrealistic to support a wide variety of lan-

guages while frequently adapting to the changes in gram-

matical definitions [33]. NiCAD [29] is a widely-used code clone

detection tool that allows a user to specify the analysis method

for each language. However, it is difficult for software developers

who do not have much knowledge of program analysis to describe

the analysis method. Semura et al. developed a token-based clone

detection tool, namely CCFinderSW [33], which employs a lexical

analysis mechanism to allow users to flexibly change the grammar

of comments, identifier names, and keywords according to the tar-

get language. However, because CCFinderSW only supports lexical

analysis changes, it cannot detect Type-3 clones [6] (see Section 3)

that contain syntactic differences.

As a practical tool that supports a wide range of languages while

flexibly responding to frequently changing grammar definitions, we

proposeMSCCD (Multilingual Syntactic Code Clone Detector), a

Type-3 code clone detection tool that allows users to input ANTLR

grammar definition files. The ability to input the grammar def-

inition files of ANTLR, a widely used parser generator, is a

practical design choice for developing a code clone detection

tool that can respond quickly to frequently changing gram-

mars. Because the grammars-v4 repository1 of ANTLR grammars

has more than 150 grammar definition files and over 6000 commits

since 2012,MSCCD, which can input ANTLR grammar files, can

handle frequent grammar changes.

Once a user provides an ANTLR grammar file and target pro-

grams that follow the grammar,MSCCD detects Type-3 clones from

1 https://github.com/antlr/grammars-v4

460

30th IEEE/ACM International Conference on Program Comprehension

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3524610.3529161&domain=pdf&date_stamp=2022-10-20

ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA Zhu and Yoshida, et al.

Figure 1: Release Log of Popular Languages

the target programs based on the grammar. By allowing the user to

input the grammar definition file of ANTLR,MSCCD can be applied

to programs written in many languages that have ANTLR grammar

definition files.MSCCD first generates a parser that extracts the

token bags (i.e., collections of elements with duplicates of keywords,

identifiers, and literals) from the program according to the grammar

definition file specified by the user. It then uses a parser to generate

the token bags [32] and detects similar subsequences to identify

Type-3 clones that contain syntactic differences.

We investigated the language extensibility of MSCCD to pro-

grams written in 21 widely used languages (see Table 2). We applied

MSCCD to programs written in each of the 21 languages included

in the Rosetta Code,2 found thatMSCCD can generate token bags

for all the 20 languages whose grammar definition file exists in

the grammars-v4 repository. In addition, we investigated the re-

call of MSCCD using a representative benchmark, BigCloneBench

[35, 36] and found that the recall of MSCCD is comparable to that

of SourcererCC [32], a state-of-the-art code clone detection tool

(see Table 3). Then, we evaluated the precision of MSCCD for the

source code included in BigCloneBench using the same procedure

applied in extant SourcererCC research [32]. The results showed

thatMSCCD is slightly more precise than SourcererCC (see Table

3). Furthermore, MSCCD could complete the detection on a 100

MLOC source code collection in approximately 6 h (see Table 4).

The main contributions of this study are as follows:

• We provide a tool, MSCCD, which detects Type-3 clones

from a target program according to its grammar when the

target programs and an ANTLR grammar definition file are

given. To the best of our knowledge, MSCCD is the first

Type-3 clone detection tool that can be used with a grammar

definition file.

• Evaluation experiments show thatMSCCD supports most

of the widely used languages and is competitive with the

state-of-the-art Type-3 clone detection tools in terms of quan-

titative measures, such as precision, recall, and execution

speed.

• MSCCD and its experimental data are available on the Inter-

net3; this enables other researchers to reproduce the evalua-

tion experiments.

The rest of this paper is organized as follows. Section 2 describes

the motivations for this research, including language diversity and

release frequency. Section 3 describes the important concepts and

definitions. Section 4 introduces the proposed approach (i.e., token

2 http://rosettacode.org/wiki/Rosetta_Code
3 https://doi.org/10.5281/zenodo.5886550

bag generation using a parse tree (PT)) and the implementation

of MSCCD in detail. Section 5 describes various experiments con-

ducted to answer the three research questions. Section 6 introduces

the threats to validation. Section 7 presents the related work. Finally,

Section 8 concludes the paper and discusses our future plans.

2 MOTIVATION

As programming languages evolve, code clone detection tools must

keep pace. Figure 1 shows the release frequency of 10 popular lan-

guages (referring to the PopularitY of Programming Language Index

ranking in September 20214). A triangle indicates a major update,

and a dot indicates a minor update5. Nearly all the languages are

updated regularly, and several languages appeared within a decade

of each other. Each release is likely to have introduced lexical or

syntactic changes to the grammar, and code clone detection tools

must be updated as these changes occur. In most cases, developers

need to modify the source program to support these updates, mak-

ing it challenging to keep most of the existing clone detection tools

up to date.

Despite the large number of languages used in software develop-

ment and the fact that these languages are regularly updated, the

number of languages supported by most code clone detection tools

is still limited. A survey paper on code clone detection research from

2013 to 2018 listed 13 tools [1], of which only one had a language

extension mechanism. The other 12 tools only support a limited

number of languages, including Java and C/C++. Research on code

clone detection tends to be biased toward popular languages for

which source code is plentiful and readily available. To the best of

our knowledge, there is no large-scale benchmark that evaluates the

recall of code clone detection in other languages, as BigCloneEval

[36] only supports Java. Therefore, it is still difficult to evaluate the

recall of code clone detection for other languages.

Among the existing tools, CCFinderSW [34] provides an ex-

tension mechanism to handle additional languages. This mecha-

nism works by converting grammar definitions into regular expres-

sions, targeting comments, string literals, and keywords. Regular

expressions cannot express arbitrary context-free sentences; hence,

CCFinderSW cannot support languages such as Lua. CCFinderSW

only covers Type-2 clones, which is insufficient for many tasks.

MSCCD can be used for many languages (probably more than 150)

in the "grammars-v4" repository, and it can fully support new or

4 https://pypl.github.io/PYPL.html
5 For languages using the semantic versioning scheme (a system to manage version
numbers semantically) [26], the major and minor versions are included. For other
languages, larger versions equivalent to the major versions are included.

461

MSCCD: Grammar Pluggable Clone Detection Based on ANTLR Parser Generation ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA

Figure 2: Multilingual Code Block Partition by Parse Tree

updated grammars by simply reusing the ANTLRv4 grammars,

which are actively developed by the "grammars-v4" community,

in a drop-in manner. Additionally, some tools emphasize easy ex-

pandability, such as SourcererCC [32]. However, we found that

sometimes these tools do not obtain correct results. For example,

we used SourcererCC’s6 block-level to tokenize a Java source file7,

but it failed to extract the correct blocks of some functions (lines

78–81) because the function parameters were split into several lines.

Therefore, we are skeptical about the actual language extensibility

of these tools. NiCAD [29], a widely-used code clone detection tool,

allows the user to specify the analysis method for each language,

but it is difficult for software developers who do not have much

knowledge of program analysis to describe the analysis method.

Another possible solution to the rapidly changing language

problem is to leverage an intermediate language such as the well-

specified LLVM IR8. However, this solution cannot be used when

the lexical and syntactic analyses of the program are required (e.g.,

syntactic clone detection [5, 13, 24]). Additionally, there are several

languages for which no conversion tools to LLVM IR-type have

been developed or for which a proper conversion is labor-intensive

(e.g., dynamically typed languages, such as Python).

Based on these observations, this work aims to develop a tool

that detects Type-3 clones from a target program according to the

corresponding grammar, given the target programs and an ANTLR

grammar definition files are given.

3 TERMINOLOGY

This paper uses the following definitions [28, 30]:

Token Bag: A bag (i.e., a collection of elements with duplicates) of

keywords, identifiers, and literals.

Granularity Value: A non-negative integer indicating the level

of the granularity of the code segment. Bigger granularity values

correspond to the finer granularity.

Code Segment: A section of continuous lines of code which is

defined by the quaternion (𝑙, 𝑠, 𝑒, 𝑔), with the source file 𝑙 , start line
𝑠 , stop line 𝑒 , and granularity value 𝑔.

6 https://github.com/Mondego/SourcererCC
7 https://github.com/tensorflow/Java/blob/daeb257/tensorflow-core/tensorflow-
core-api/src/gen/annotations/org/tensorflow/op/DtypesOps.Java
8 http://llvm.org

Code Block: A code block is a code segment whose sentences are

grouped by one grammar rule.

Composition: In this paper, a composition is defined as a code

block corresponding to at least one grammar rule. Classes, condition

statements, loop statements, or functions can be a composition. This

item is mainly used to evaluate the ability of MSCCD to generate

token bags in Section 5.

Clone Pair: A pair of similar code segments.

Clone Type: Code clones can be classified into four types:

• Type-1 (T1): Identical code segments, except for the differ-

ences in white-space, layout, and comments.

• Type-2 (T2): Identical code segments, except for the differ-

ences in identifier names and literal values, in addition to

the T1 clone differences.

• Type-3 (T3): Syntactically similar code segments that differ

at the statement level. The segments have statements added,

modified, and/or removed with respect to each other, in

addition to the T1 and T2 clone differences.

• Type-4 (T4): Syntactically dissimilar code segments that

implement the same functionality.

4 PROPOSED TOOL

The following subsections introduce the main idea and implemen-

tation of MSCCD.

4.1 Main Idea: Code Block Partition by PT

Most code clone detection tools aim to not only detect clones be-

tween source files but also seek to partition them into code blocks

[30]. This is a significant challenge for multilingual detection tools.

Because the accurate division of code blocks requires syntax anal-

ysis and no syntax analyzer is suitable for multiple languages, re-

placing the syntax analyzer for the existing tools also requires

source-code-level redevelopment. As shown in Figure 2, the main

idea is that every subtree in a parse tree (PT) presents a seman-

tic code block. A PT is an ordered tree representing the syntactic

structure according to grammar. It is generated via syntax analy-

sis, presenting how production is applied to replace non-terminals.

Thus, each subtree in a PT represents the production of the grammar,

wherein the root node represents the left side of the production,

and all child nodes of the root node represent the right side of

the production. Correspondingly, all leaf nodes from the subtree

462

ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA Zhu and Yoshida, et al.

1 b l o ck : ' { ' b l o c k S t a t emen t s ? ' } ' ;

2 b l o c kS t a t emen t s : b l o c kS t a t emen t + ;

3 b l o ckS t a t emen t :

l o c a l V a r i a b l eD e c l a r a t i o n S t a t em e n t

4 | c l a s s D e c l a r a t i o n

5 | s t a t emen t ;

Figure 3: A Part of the Java Grammar

0

1

2 3

4 5 6 7 8

9 10

0

2 3

7

0

1

2

PT SPT granularity value

*: The minimum tokens is set to 2.

Figure 4: Simplification of a Parse Tree

Table 1: The Number of Extracted Code Blocks

id strategy extracted code blocks

1 extract from PT 1 525 922

2 extract from simplified SPT 60 541

3 id 2 with keyword filter 35 556

*: The strategy 1 is not implemented in MSCCD.

present terminals, a token, an operator, or other lexical units. The

source file can be divided into several blocks by handling these

lexical units. Besides, a parser for the target language can be easily

generated by using a parser generator.

Notably, the PT generated by a general-purpose parser is not

suitable for code clone detection. On the one hand, a PT contains

redundant nodes. For example, Figure 3 shows an example of the

Java 8 grammar, which defines code blocks. For the derivation

of the production in line 2, if the non-terminal 𝑏𝑙𝑜𝑐𝑘𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 is
matched only one time, the two subtrees (the root node of one is the

non-terminal 𝑏𝑙𝑜𝑐𝑘𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 , and the other is the non-terminal
𝑏𝑙𝑜𝑐𝑘𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡) will contain the same lexical units. In other words,
the two subtrees correspond to completely overlapping code blocks

in the source file. This phenomenon is common in all languages.

On the other hand, not all nodes represent a code block that can be

regarded as a semantic code block. For example, many tiny subtrees

may correspond to a part smaller than a statement. These parts are

meaningless for code clone detection.

To reduce meaningless data, we propose simplifying the PT

and generating a simplified PT (SPT). Algorithm 1 lists the steps

required to simplify the PT. The input PT is traversed in the pre-

order (line 2). The first step for each node, 𝑛, is to merge all child
nodes containing the same lexical units as 𝑛 (lines 3–5). The merged
nodes are not visited afterward. The second step is to check if node

𝑛 contains sufficient lexical units to meet the configured value (line

Algorithm 1: Parse Tree Simplification

Input: 𝑇 is a PT, each tree node contains an attribute 𝑠𝑖𝑧𝑒
representing its token number and an attribute 𝑐ℎ𝑖𝑙𝑑
containing child nodes;𝑚𝑆𝑖𝑧𝑒 is the configured
minimum size

Output: An SPT

1 Function ParseTreeSimplification(𝑇 ,𝑚𝑆𝑖𝑧𝑒):
2 foreach tree node 𝑛 in pre-order traversal of 𝑇 do
3 while 𝑛.length == 𝑛.child[0].length do
4 merge (𝑛, 𝑛.child[0])

5 end while

6 if 𝑛.size <𝑚𝑆𝑖𝑧𝑒 then
7 foreach child node 𝑐𝑛 from 𝑛 do
8 delete (𝑐𝑛)

9 end foreach

10 end if

11 end foreach

12 return 𝑇

13 end

7). If node 𝑛 is not large enough, all child nodes of 𝑛 will be deleted
to make 𝑛 a leaf node (lines 8–10). The deleted nodes will not be
visited in the traversal afterward. Figure 4 shows an overview of

the simplification when setting𝑚𝑆𝑖𝑧𝑒 to two.
Each node in the SPT corresponds to a subtree in the original

PT. Thus, it corresponds to a code block. The depth of a node in the

SPT is defined as its granularity value. The smaller the depth value,

the coarser the granularity. Furthermore, nodes having the same

depth value are more likely to represent the precise composition of

the language. For example, in Java, nodes having a depth value of

one represent classes, and those having a value of four represent

functions.

Additionally, languages use keywords to define semantic code

blocks, such as classes, methods, and loops. These code blocks are

also targets for code clone detection. This class of nodes in the SPT

has a feature that has a child node corresponding to a subtree in

the PT that only contains keywords. This feature allows for further

filtering of nonsensical code blocks. We call it a keyword filter. It is

discussed in Subsection 4.2.2.

To verify the effectiveness of PT simplification and the keyword

filter, we conducted a preliminary experiment with the source code

of Tensorflow-Java9. It contains 2,158 files with 563,059 lines of

code. We calculated the number of code blocks extracted using this

method under various conditions. The results are summarized in

Table 1. When using the keyword filter, the number of target nodes

was only approximately 2% of the original non-leaf nodes. Addi-

tionally, depending on the detection task’s needs, the range of block

size, granularity values, and keywords can also be configured to

limit further the number of code blocks involved in clone detection.

The proposed method has three merits. First, source files can

be correctly divided into semantic blocks. Because all subtrees

in the PT correspond to a production in the grammar, the generated

9 https://github.com/tensorflow/Java

463

MSCCD: Grammar Pluggable Clone Detection Based on ANTLR Parser Generation ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA

Grammar Definition

Parser

Generation

Parser

+Code-block Extractor

Keywords ListSource Files

Token Bag

Generation

Token

Bags
Clone

Detection

Clone

Pairs

Code Block Extractor Generation (4.2.1) Token Bag Generation (4.2.2) Clone Detection (4.2.3)

Figure 5: Overview of MSCCD

code blocks also contain the semantic information from that produc-

tion. Additionally, via syntax analysis, the correctness of the code

block partition can be ensured. Second, Code blocks at various

granularities can be generated by using this method. In the

PT, the node closer to the root node represents a greater granularity,

such as a class or the whole file; the node farther from the root node

represents a finer granularity, such as that of a statement. Thus,

detectors can detect clones at multiple granularities or within a

specific language component. Third, high language extensibility

can be ensured using a parser generator. Theoretically, a parser

generator can generate parsers for all context-free languages. The

parsers generated by the same parser generator can be accessed

using the same application programming interface (API). As a re-

sult, the supporting language can be changed without modifying

the program.

4.2 Overview of MSCCD

The overview of the proposed code clone detection tool (i.e.,MSCCD)

is summarized in Figure 5. This depiction can be regarded in three

phases: code block extractor generation (Section 4.2.1), token bag

generation (Section 4.2.2), and clone detection (Section 4.2.3). First,

MSCCD generates a code block extractor for the target language

using a parser generator. Second, the input source code is con-

verted into token bags. Finally, MSCCD detects the code clones

between the token bags. Algorithm 2 lists the main steps of token

bag generation in Section 4.2.2.

4.2.1 Code Block Extractor Generation. Here,MSCCD generates

a code block extractor for the target language. For each language,

MSCCD only needs a grammar definition file. Thus,MSCCD can

change the supporting language or language version by changing

only the grammar definition file, and there is no need to modify

the program. Hence,MSCCD has excellent language extensibility.

This only needs to be executed once for each language.

We chose ANLTR10, which can create a parser for a language

based on the grammar definition, including lexer and parser rules.

For ANLTR, a language is defined by context-free grammar ex-

pressed using the extended Backus–Naur form (BNF). Therefore,

grammar definition files for ANTLR can be easily created using the

official grammar information. For languages that need unique treat-

ments (e.g., the indents in Python), ANTLR allows programs to be

embedded in the generated parser to solve the issue. Furthermore,

there is a GitHub repository named "grammars-v4" 11, which is a

collection of ANTLR grammars and handling programs with more

10 https://www.antlr.org/
11 https://github.com/antlr/grammars-v4

than 150 languages. Users can easily obtain grammar definition

files from this repository for a target language.

The code block extractor simplifies the PT generated by the

parser using the algorithm introduced in Section 4.1 and identifies

the code blocks.

Algorithm 2: Token Bag Generation

Input: 𝑇 is a SPT generated by Algorithm 1. 𝐾 is the
keywords list.

Output: A Collection of token bags

1 Function TOKENBAGGENERATION (𝑇 , 𝐾):
2 𝑇𝑎𝑟𝑔𝑒𝑡𝑁𝑜𝑑𝑒𝑠 ,𝑇𝑜𝑘𝑒𝑛𝐵𝑎𝑔𝑠 = [];

3 if 𝐾 == ∅ then

4 foreach TreeNode 𝑛 in 𝑇 do
5 𝑇𝑎𝑟𝑔𝑒𝑡𝑁𝑜𝑑𝑒𝑠 .append(𝑛);

6 end foreach

7 else

8 foreach TreeNode 𝑛 in 𝑇 do
9 if KeywordsFilter(𝑛, 𝐾) == True then
10 𝑇𝑎𝑟𝑔𝑒𝑡𝑁𝑜𝑑𝑒𝑠 .append(𝑛);

11 end if

12 end foreach

13 end if

14 foreach TreeNode 𝑡𝑛 in 𝑇𝑎𝑟𝑔𝑒𝑡𝑁𝑜𝑑𝑒𝑠 do
15 𝑇𝑜𝑘𝑒𝑛𝐵𝑎𝑔𝑠 .append(token bag created from 𝑡𝑛)

16 end foreach

17 return 𝑇𝑜𝑘𝑒𝑛𝐵𝑎𝑔𝑠 ;

18 end

19 Function KeywordsFilter (𝑛, 𝐾):
20 foreach TreeNode 𝑐𝑛 in 𝑛.𝑐ℎ𝑖𝑙𝑑𝑠 do
21 𝑓 𝑙𝑎𝑔 = 0;

22 foreach Token 𝑡 in 𝑐𝑛 do
23 if 𝑡 .type == ’Keyword’ then
24 𝑓 𝑙𝑎𝑔 |= 1;

25 else

26 𝑓 𝑙𝑎𝑔 |= 3;

27 end if

28 end foreach

29 if 𝑓 𝑙𝑎𝑔 == 1 then
30 return True;

31 end if

32 end foreach

33 return False;

34 end

464

ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA Zhu and Yoshida, et al.

4.2.2 Token Bag Generation. The source files from the input project

are partitioned and converted into token bags during this phase.

The input software project, 𝑃 , consists of several files, 𝐹 : 𝑃 =
{𝐹0, 𝐹1, ..., 𝐹𝑛}. A file, 𝐹 , can be represented by a set of code blocks,
𝑆𝐺 . MSCCD allows overlap between code blocks because they
have different granularity values, and overlaps are bound to occur.

MSCCD transforms these code blocks into token bags [44], which

are defined as sets of tokens.

For each source file, MSCCD first generates an SPT using Algo-

rithm 1. Then MSCCD generates a token bag for each extracted

code block. Algorithm 2 lists the steps of token bag generation.

The input includes an SPT and a keyword list. All the sub-trees

corresponding to code blocks is saved in the list 𝑇𝑎𝑟𝑔𝑒𝑡𝑁𝑜𝑑𝑒𝑠 . If
the keywords filter is not activated, all the nodes from SPT will be

set as target nodes which presents a code block (line 3-7). Only the

nodes that passed the keywords filter are set as target nodes (line

8-14). At last, MSCCD generates token bags for each target node by

accessing the corresponding sub-tree in the original PT (line 18).

The keyword filter can be activated by providing a non-empty

keyword list. The input sub-tree can pass the keyword filter if

at least one child only contains keywords (line 22-33). By using

this filter, MSCCD retains more semantic code blocks to reduce

the number of candidates. Additionally, this feature can be used

to select specific parts of the language. For example, the user can

detect code clones only between functions in Python by providing

a keyword list that only contains the keyword "def".

4.2.3 Clone Detection. Code clones are detected by finding similar

pairs from the generated token bags. To detect clones, we adopted

the definition and algorithm proposed by SourcererCC, which has

good recall and scalability for syntactic code clone detection [32].

It uses the ratio of the number of tokens shared by two token bags

to the number of elements in the larger bags to present similarity.

Two token bags, 𝐵𝑥 and 𝐵𝑦 , are judged as clones if the similarity is
greater than or equal to the threshold, 𝜃 :��𝐵𝑥 ∩ 𝐵𝑦

��
𝑀𝐴𝑋

(
|𝐵𝑥 | ,

��𝐵𝑦 ��) ≥ 𝜃 . (1)

The main challenge in this part is organizing the token bags

during detecting clones to obtain better performance. As explained

in Section 4.2.2, a source file is presented by several token bags

with several granularity values. Furthermore, there may be over-

laps between token bags at different granularities. Theoretically,

detecting clones between all the candidate pairs can achieve the

highest recall. Correspondingly, this strategy has the highest operat-

ing overhead, significantly increasing execution time. Notably, the

operating overhead increases due to the massive comparison times,

and removing the overlapped clones from the report takes time.

Overlapped clones are generated because the corresponding code

segments may also be cloned, e.g., the corresponding sub-fragment

of a T1 clone pair will still be a T1 code clone.

We chose to detect clones only between token bags with the same

granularity value. In this strategy, when setting the biggest granular-

ity value as 𝑔𝑚𝑎𝑥 and the number of token bags in granularity value

𝑖 as 𝑁𝑖 , the time complexity of candidate comparison is reduced

from 𝑂

((∑𝑔𝑚𝑎𝑥

𝑖=0 𝑁𝑖
)2)
to 𝑂

(∑𝑔𝑚𝑎𝑥

𝑖=0 𝑁 2𝑖

)
. This is mainly because

the functional consistency of code cloning makes it more likely to

have the same granularity value, especially for inner-project clones.

When the cloned code segment has a granularity value close to

that of the original segment, there is a high probability that the

clone will be detected due to the existence of the overlapped token

bags. In other words, there will be a token bag containing the code

segment at the corresponding granularity. Although the similarity

of the code segments participating in the comparison is reduced,

they can still be detected if higher than the threshold. Additionally,

this method can be easily parallelized by using multiple processes

to compare token bags in each granularity value.

For the overlapped clones, we choose only to report those of the

smallest granularity value. The remaining overlapping clones will

be filtered out after detection.

5 EVALUATION

To evaluate the performance ofMSCCD, we conducted experiments

to answer the following research questions:

• RQ1: How many languages canMSCCD support?

• RQ2: What is the precision/recall and the scalability of

MSCCD code clone detection?

• RQ3: Are the code clones detected byMSCCD for each lan-

guage appropriate for the purpose of software maintenance?

5.1 RQ1: Language Extensibility

Experimental Design: The proposed method includes an optional

keyword filter. When executing MSCCD without using the key-

word filter, it can theoretically support all languages with ANTLRv4

grammar files. However, this strategy increases the execution time

because of a higher overlap of candidates. On the other hand, some

code blocks might be filtered out incorrectly when using the key-

word filter, thus reducing recall. This experiment evaluates the

number of compositionsMSCCD supports with or without using

the keyword filter.

We determined four items for each language: class, function,

branch, and loop. These items are the most basic and standard parts

of languages. For each item, all corresponding grammar is included

within the scope of the test targets. For example, all loop items,

including but not limited to the while loop, for loop, and do-while

loop, are test objects. We regard function items as the most relevant

to show the extensibility of the target language among the four

items. The other three items reflect whether MSCCD can detect

code clones at more granularities. However, it should be noted

thatMSCCD does not merely support these four items. The other

language components can also be accurately extracted depending

on the grammar. If all corresponding code blocks are accurately

extracted, including the corresponding code block, lacking any

irrelevant code segments, the item is passed (circle mark; �). It is
regarded as a failure if a target code block fails to be generated

correctly without a syntax analysis error.

Target Language and Input Data:We evaluated the most popu-

lar 21 languages according to the PYPL ranking. For each language,

we randomly selected five files with more than ten lines from the

Rosetta Code.12. Rosetta Code is a site that collects solutions to

more than 1,138 tasks in various languages. It adopts basic methods

12 http://www.rosettacode.org/wiki/Rosetta_Code

465

MSCCD: Grammar Pluggable Clone Detection Based on ANTLR Parser Generation ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA

Table 2: Language Extensibility to the top 21 most popular

languages in PYPL

Lang. F. Cl. Cd. Loop Lang. F. Cl. Cd. Loop

Python �� �� �� �� Kotlin �� �� �� ��
Java �� �� �� �� Matlab �� ☼ �� ��
JavaScript �� ☼ �� �� Go �� ☼ �� ��
C# �� �� �� �� VBA �� ☼ �� ��
PHP �� �� �� �� Rust �� �� �� ��
C �� ☼ �� �� Ruby �� �� �� ��
C++ �� �� �� �� Scala �� �� �� ��
R �� ☼ �� �� Ada � � � �
TypeScript �� �� �� �� VB �� ☼ �� ��
Swift �� �� �� �� Dart �� �� �� ��
Objective-C �� ☼ �� ��
1:�: Positive �: Negative ☼: Not applicable�: Positive, compilation error exists �:
Grammar definition does not exist
2: Left side: result without keyword filter. Right side: result with keyword filter.
3: Lang.: Language. F.: Function, Cl.: Class, Cd.: Condition.

and does not use a development framework; hence, the four items

will appear in the code more commonly. If the test targets are ran-

domly selected from open source software, the chosen targets are

sometimes unable to obtain some items because these compositions

may not be used in the source program.

Tool Configuration: In this experiment, we set the minimum

tokens as two, which can fully expose the language component

extraction ability of MSCCD. Moreover, the complete keyword list

(the keyword list which contains all the keywords according to

official information) is provided.

Result: Table 2 lists the experiment results. Among the 21 target

languages, 20 are available inMSCCD. Moreover, all the compo-

nents of these 20 languages can be supported when not using the

keyword filter. Among the 20 languages, functions of 18 are suc-

cessfully extracted except for Objective-C and Ruby. We manually

checked the productions of functions in Ruby’s grammar. We found

that the root node of all the corresponded subtrees of the function

composition can not contain a child node that only contains leaf

nodes of keywords. Therefore, these subtrees in Ruby are filtered

out by the keywords filter. For the same reason, only a part of the

functions can be supported in Objective-C. All languages support

the condition of the other three items, and the loop is supported

by 19, except for Go. The reason for failing to extract the loop in

Go is the same as that of the functions in Objective-C. For class, 11

passed the experiment among the 13 languages. The overall exper-

iment results indicate thatMSCCD has relatively high language

extensibility.

Notably, the experiments of four languages (left circle mark; �)
had syntax analysis errors and failed to generate a correct PT for

some source files. Because the purpose of this experiment was to

evaluate how many languages can be supported when the PT is

generated, we manually checked the grammar of these languages

to check the fact that these compositions can be extracted or not.

Comparison with CCFinderSW: Table 2 implies that MSCCD

can be used for many languages in the “grammars-v4” repository.

With state-of-the-art tools, CCFinderSW [34] has a close level of

language extensibility. However, CCFinderSW’s approach cannot

support some languages e.g., Lua, making its language extensibility

lower than that of MSCCD. One of the necessary steps for CCFind-

erSW to support a language is to convert the grammar rules into

regular expressions. This conversion is not always possible since

regular grammar is a subset of ANTLR’s context-free grammar.

Since MSCCD performs the syntactic analysis using ANTLR, such

an issue does not arise. In addition, MSCCD can fully support new

or updated grammars by simply reusing the ANTLRv4 grammars

in a drop-in manner.

The answer to RQ1:When using the keyword filter,MSCCD can

provide function-level support for 18 of 20 available languages.

Furthermore, when the keyword filter is inactivated,MSCCD

can support all 20 tested languages.

5.2 RQ2: General Performance

We believe that because the similarity calculation results were the

same, the detection performances of MSCCD remain unchanged

regardless of the language. The experiments were conducted using

Java. To compare the existing syntactic code clone detection tools,

we followed the experimental methods published in SourcererCC

[32] and used the framework and dataset provided therein. For

all the experiments discussed in this subsection, we configured

MSCCD for a minimum clone size of 50 tokens and a similarity

threshold of 70%. A complete list of keywords is provided. The

evaluation results of other compared tools were taken from the

published work [41].

Recall: We measured the recall of MSCCD by using Big-CloneEval

[36], which provides clone detection tool evaluations based on

BigCloneBench [35]. BigCloneEval reports the recall of each type

of code clone, which is used to measure the detection ability of

syntactic code clones. In BigCloneEval, T3 clones were divided into

Very-Strongly Type-3 (VST3), Strongly Type-3 (ST3), Moderately

Type-3 (MT3), andWeakly Type-3 (WT3) according to the similarity

[36]. We set the clone matcher to a minimum size of six lines and

50 tokens for comparing the existing results [41].

Table 3 shows the result of recall measurements. Similar to these

tools,MSCCD also has a near-perfect recall on T1 and T2 clones.

For the recall of the three T3 clones,MSCCD ranks third. Notably,

the comparison with SourcererCC is interesting. The reason for

this is explained as follows. The two tools use basically the same

similarity calculation method and clone detection algorithm. In

theory, the recall based on BigCloneBench should be the same.

However, MSCCD recall on ST3 and MT3 is higher than that of

SourcererCC. We believe that this is becauseMSCCD creates token

bags in multi-granularity. When performing a complete detection,

the same code segment is inspected at multiple granularities, im-

proving the detection ability. To prove this argument, we set a test

group forMSCCD containing only reported clones in granularity

values 0 and 4 (file-level and function-level in Java). In this group,

the recall of ST3 and MT3 dropped slightly and was closer to that

of SourcererCC. The detection results in granularity values 0 and 4

only account for approximately 44% of the total.MSCCD reported

a large number of clones at other granularities.

Precision: We measured the precision of MSCCD using the same

random sample test as [32]. We randomly selected 400 clone pairs

detected byMSCCD in the BigCloneEval experiment and equally

distributed them to five judges to determine the correctness of each

466

ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA Zhu and Yoshida, et al.

Table 3: Recall and Precision Measurements

Tool
Recall

Precision
T1 T2 VST3 ST3 MT3

MSCCD 100 98 93 63 7 92

MSCCD* 100 98 93 61 6 91

SourcererCC 100 98 93 61 5 83

CCAligner 100 99 97 70 10 80

CCFinderX 100 93 62 15 1 72

Deckard 60 58 62 31 12 60

NiCad 100 100 100 95 1 56

iClones 100 82 82 24 0 91

*: only contains clone pairs in granularity value 0 and 4

Table 4: Execution Time

LOC 1K 10K 100K 1M 10M 100M

Time 1 sec 4 sec 17 sec 3 min 13 sec 1 hr 14 min 33 sec 6 hr 6 min 52 sec

clone pair. The clone pairs were marked as "unknown" for judging

complex situations. To compare the state-of-the-art tools, we set

two test groups. One group contained pairs selected from all the

results. This group represents the average precision of MSCCD. The

other group only contained reported pairs in granularity values 0

and 4. This group is more convincing to compare with the other

tools because the granularity is closer to traditional tools.

Table 3 lists the results. For the first group containing results for

all the granularities, the precision of MSCCD was calculated from

the resulting 368 pairs of true positives and 32 pairs of false positives

(including eight pairs marked as difficult to determine).MSCCD

had the precision at 92%. For the group that only contains results

in granularity values 0 and 4,MSCCD also had a near precision of

91%.

Execution Time: To evaluate the performance of different data

sizes, we generated test files by randomly selecting files from

IJaDataset[12]. We used the Linux command “wc” to measure lines

of codes. The experiments were executed on a quad-core CPU, and

the maximum heap memory size of the Java Virtual Machine was

set to 12GB. The time to generate the parser and code block extrac-

tor was less than 5 s and only needed to be executed once. We also

set two test groups to measure execution time when the keyword

filter is activated or when it is not. The result is listed in Table 4.

MSCCD has good scalability and can complete the 100-MLOC-level

clone detection task in slightly more than 6 hr.

The answer to RQ2:MSCCD has a level of recall and precision

equivalent to state-of-the-art tools and can complete detection

on repositories of up to 100MLOC.

5.3 RQ3: Language Features of the Detected
Clones

While some code fragments of code clones correspond to the logic,

others are difficult to use for maintenance, such as a sequence of

import or constant declarations. In this section, we present an ex-

perimental evaluation of whetherMSCCD could detect code clones

Table 5: Overview of Detections in 9 languages

Language MLoc
Tokens Token Bags Detected Clone Keywords

(M) (K) mt = 20 mt = 50 Ratio

C 21.09 48.80 3405.84 10191 7148 15.44%

Java 4.62 13.20 391.61 504966 96004 37.68%

C++ 3.14 9.22 126.18 55317 16823 47.89%

C# 2.10 4.35 117.98 100178 22333 62.40%

Kotlin 2.33 7.58 169.51 31805 16554 39.53%

Swift 0.28 0.65 18.82 59672 20121 49.94%

JavaScript 0.95 2.57 39.32 22230 10439 14.27%

Rust 1.65 3.91 90.90 6419 2040 38.48%

Go 7.42 22.20 35.52 9342416 1019142 10.30%

mt: min token. (M): mega. (K): kilo.

Table 6: Frequently Occurring Compositions in Figure 6

Lang. GV Comp. Lang. GV Comp. Lang. GV Comp.

Java 4 function

Swift

2 class
Go

1 function

C++ 7 branch, loop 5 function 4 branch, loop

C# 6 function 8 branch JavaScript 2 function

Kotlin
1 class

Rust
2 function GV: Granularity Value

3 function 4 branch Comp.: Composition

of code fragments that represent logic in a wide range of minimum

token numbers, which is a code clone detection parameter.

In the experiment, we selected five repositories from GitHub for

nine target languages by order of stars. We believe that the high-

star repositories are more representative. MSCCD was executed

twice for each repository when configuring the minimum token

number to 20 and 50. Table 5 lists an overview of the experiment,

including size, number of extracted token bags, number of clones

detected, and the ratio of keywords.

The language compositions that can be described at each gran-

ularity are different depending on the grammar. Therefore, we

investigated how the granularity of the generated token bag and

the detected clone changes when the min token is changed for

each language. We drew the distribution of all the extracted token

bags and all the token bags that were detected as clones along with

each granularity value into a line graph (Figure 6). The x-axis of

each graph represents the granularity value, and the y-axis repre-

sents the token bags and the reported clones corresponding to that

granularity.

The first point of concern is the number and position of the heap

in the polyline representing the clone (blue polylines). The heap

in the blue polyline indicates that many clones were gathered at

this granularity. Table 6 lists frequently occurring compositions at

the granularity where there is a heap in Figure 6. We believe that

function-level clones are more efficient for software maintenance.

The clones in branches and loops are usually error handling, excep-

tion capture, and high-frequency code (such as traversal), which

are relatively insignificant for software maintenance.

When the minimum number of tokens was changed from 50 to

20, some languages did not change the heap position very much,

while others changed significantly. The small clones detected are

often part of the larger clones in the languages whose heap did

not change. Many small clones exist in the language whose heap

467

MSCCD: Grammar Pluggable Clone Detection Based on ANTLR Parser Generation ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA

Figure 6: Distributions of Token Bags and Clones

changed that are not part of the large clones. So many tiny clones

were reported. For example, in Go, the position of the clone curve

heap changed significantly when the minimum number of tokens

was 20. It occurred because Go’s error handling generates an abun-

dance of clones between branches. By contrast, for languages such

as Java and JavaScript, the position of the heap does not change,

but the height drops slightly. It showed few clones with smaller

granularity values in this language, and most were produced in

larger units. Tiny clones may reduce the effectiveness of the result

set for maintenance but may be adequate for other tasks. Detection

tools can be configured according to requirements.

Unlike other languages, the code clone of the C language is gath-

ered at the granularity value of 0 whenever the minimum number of

tokens is set to 20 or 50. However, this is not a feature of C language

syntax but is related to application scenarios. The experimental

object of the C language in this experiment includes the source

code of the Linux Kernel. Many file-level clones exist because they

need only individual replacements to adapt to different devices. The

Linux Kernel project is significantly larger than the other tested

projects, so the characteristics of the project overshadow the C

language’s characteristics.

The answer to RQ3: For most of the languages,MSCCD detected

code clones such as functions, branches, and loops, which would

be of interest for maintenance tasks when the parameter min

token ranged from 20 to 50. For some languages, different min

tokens may result in different kinds of clones being detected,

which might be tuned by monitoring granularity.

6 THREATS TO VALIDITY

One internal threat is that we did not report the precision of differ-

ent languages. We designed the experiments in Section 5.2 based on

the following assumptions: BecauseMSCCD converts code blocks

written in context-free languages into token bags, there will be no

significant difference in the precision between different languages.

The result shows that MSCCD has the same precision as clone

detection tools for a specific language becauseMSCCD adopts the

same detection method as the latest Type-3 clone detection tool (i.e.,

SourcererCC) after converting code blocks to token bags. Besides,

MSCCD does not tune for any particular language. Making bench-

marks by ourselves for this study may lack appropriateness and

objectivity, so we abandoned the solution of reporting accuracy for

each language separately and instead used the classical benchmark

BigCloneBench for indirect evaluation.

We also did not report the recall of other languages. Firstly, we

believe that the performance of the detection method is consistent

in most programming languages. Secondly, there is a lack of re-

call evaluation benchmarks (e.g., BigCloneBench [35]), making it

impossible to provide recall for all supported languages. Besides,

BigCloneBench only contains code clones at the function level. That

means the recall of clones with below granularities is not measured.

As mentioned in Section 5, the number of clones reported at granu-

larity values 0 and 4 is only about 44% of the total. From this, we

are optimistic about the recall of the finer granularity. We will seek

newer evaluation methods to measure that in future work.

Another internal threat is that the data tested in the experiment

discussed in Section 5.3 may not be sufficient. We selected the repos-

itories based on the number of stars on GitHub. Because high-star

open-source software (OSS) is used more frequently and has a more

demonstrable effect, we believe that the high-star repositories can

represent language situations. However, there may be significant

differences in project sizes, which brings about the problem of

uneven weighting. We will continue to expand the scope of the

experiment in the future.

An external threat exists regarding the language extensibility of

MSCCD.MSCCD tokenizes code based on parsers generated by

ANTLRv4, and there may be parsing errors. If an error occurs at

an early stage, for example, during lexical analysis or at a higher

position than target subtrees in the PT, MSCCD will not output

the expected results. Users must confirm that the used grammar

definition file is executable in ANTLRv4 and that it matches the

version with the target files.

468

ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA Zhu and Yoshida, et al.

7 RELATEDWORK

Since the 1990s, many code clone detection tools and methods have

been proposed. Based on the similarity analysis approach, these

tools canmainly be categorized in to four classes: [30] textual [9, 29],

lexical [4, 15, 18], syntactic [5, 13, 16], and semantic [10, 19]. The

following keywords are commonly found in the research hits:

T3 clone detection: NiCAD [29], iClones [11], Deckard [13],

CCAligner [41], and SourcererCC [32] are some well known de-

tection tools that detect code clones up to T3. In the experiment,

MSCCD had the same level of recall as these tools. Moreover, Oreo

[31] and CloneWorks [37] also have good performance in T3 code

clone detection.

T4 clone detection: a T4 code clone is also known as a semantic

code clone. AnDarwin [8] uses semantic information to find similar

Android applications. SrcClone [2] uses program slicing technology

to analyze code segment similarity to detect T4 clones. SCDetector

[42] combines the information about the token and the control

flow graphs and uses a neural network to generate a code clone

detector, achieving very good evaluation results.MSCCD does not

have the ability to detect semantic clones and cannot be compared

with these tools.

Big-Code clone detection: SourcererCC [32] has increased the

scalability of the code clone detection tool to 250 MLOC. Moreover,

SAGA [17] detects code clones using a GPU accelerated suffix-array

matching algorithm and raises the scalability to the level of 1 BLOC.

Due to the amount of calculation,MSCCD is unable to outperform

these tools on scalability.

In the era of multilingual code clone detection,CCFinderSW

[34] had the highest language extensibility beforeMSCCDwas pro-

posed. CCFinderSW generates a source-code parser by converting

the grammatical rules of the target language into regular expres-

sions. The parser can remove comments from the source code and

generate a token sequence to match CCFinderX ’s [14] clone detec-

tor. When the comment syntax of the target language cannot be

converted into regular expressions, CCFinderSW cannot support it.

Additionally, CCFinderSW only supports the detection of T2 clones.

Both weaknesses have been resolved inMSCCD. Some text-based

tools [9] can also support multiple languages, but the similarity

information available in such ancient technologies is too scant to

detect more clone types. Furthermore, some existing tools claim

to be easy to extend to new languages, but it turns out that the

language extensibility of these tools is not enough.

Different from traditional detection tools,Cross-language code

clone detection aims to detect code cloning between different

languages. Perez et al. [25] detected clones between Java and Python

by learning token-level vector representations and an LSTM-based

neural network. CLCDSA [22] can detect cross-language clones

without generating an intermediate representation by learning and

comparing the similarity of features. LICCA [40] extracts syntactic

and semantic similarities based on the high-level representation

of code from the SSQSA platform and can detect clones between

five languages, including Java and C.MSCCD does not have the

capability of cross-language clone detection. However, we expect

that source code normalization with the same language extensibility

asMSCCD can be used for cross-language clone detection.

There have been studies that target programs in which multiple

languages are mixed [3, 20, 39]. In particular, web systems often

contain programs in which multiple languages are mixed [21, 27],

and analysis tools for such systems are needed. Nakamura et al. also

worked on code clone detection and suggested a detection tool for

a web system [23]. ExtendingMSCCD to include such systems by

using techniques such as island grammars [20, 39] is also a future

challenge. Note that cross-language code clone detection assumes

that each software system is written in a single language and should

be distinguished from the case where multiple languages are mixed.

Determining how to benchmark code clone detection tools is

a perennial problem for code clone researchers. Initially, applica-

tions to large-scale OSSs such as well-known operating systems

(e.g., FreeBSD, Linux, and NetBSD) were frequently performed, and

subsequent studies were compared by applying them to the same

large-scale OSS as prior studies [13, 15, 18]. The first large-scale

benchmark for a code clone detection tool was created by Bellon et

al. [6]. They visually judged whether a code clone was present. This

benchmark is composed of C source code. The most prominent and

recently used benchmark is BigCloneBench [35, 36], which was also

used in this study. When creating this benchmark, Svajlenko and

Roy succeeded in creating a larger benchmark than that of Bellon et

al. by performing code mutations. This benchmark comprises Java

source code. In 2021, Svajlenko and Roy published a mutation and

injection framework for benchmarking using mutation analysis

[38]. There is also a growing body of research that uses competi-

tive programming code, such as Google Code Jam, as benchmarks

[25, 43, 45]. Much of the research leveraging these benchmarks are

deep-learning-based code clone detectors [25, 43, 45]. The Project

CodeNet13, which IBM recently released, will also be used as a

benchmark in this research. Existing benchmarks are generally

composed of Java or C source code [6, 35]. With the increase in

multilingual code clone detection, such asMSCCD, it is expected

that benchmarks composed of source code in various languages

will be created in the future.

8 CONCLUSIONS AND FUTUREWORK

In this paper, we proposed MSCCD, a grammar-pluggable code

clone detection tool.MSCCD showed the highest language scalabil-

ity and good performance in terms of evaluation metrics, including

recall and precision. In a case study with multiple languages, we

discovered the impact of language features on code clone detection,

revealing that further research in other languages is needed.

In future works, we plan to evaluate MSCCD ’s precision in

various languages. We also intend to enableMSCCD to cover more

clone types while maintaining the same language extensibility and

further improving the scalability of MSCCD.

ACKNOWLEDGMENTS

Thisworkwas supported by JST, PRESTOGrant Number JPMJPR21PA,

Japan. Also, this work was supported by JSPS KAKENHI Grant

Numbers JP18H04094 and JP19K20240.

13 https://github.com/IBM/Project_CodeNet

469

MSCCD: Grammar Pluggable Clone Detection Based on ANTLR Parser Generation ICPC 2022, May 21–22, 2022, Pittsburgh, PA, USA

REFERENCES
[1] Qurat Ul Ain, Wasi Haider Butt, Muhammad Waseem Anwar, Farooque Azam,

and Bilal Maqbool. 2019. A Systematic Review on Code Clone Detection. IEEE
Access 7 (2019), 86121–86144. https://doi.org/10.1109/access.2019.2918202

[2] Hakam W Alomari and Matthew Stephan. 2020. Srcclone: Detecting code clones
via decompositional slicing. In Proceedings of the 28th International Conference on
Program Comprehension. 274–284.

[3] Alberto Bacchelli, Andrea Mocci, Anthony Cleve, and Michele Lanza. 2017. Min-
ing structured data in natural language artifacts with island parsing. Science of
Computer Programming 150 (2017), 31–55.

[4] Hamid Abdul Basit and Stan Jarzabek. 2007. Efficient token based clone detec-
tion with flexible tokenization. In Proceedings of the the 6th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering. 513–516.

[5] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lor-
raine Bier. 1998. Clone detection using abstract syntax trees. In Proceedings of
International Conference on Software Maintenance. IEEE, 368–377.

[6] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo.
2007. Comparison and Evaluation of Clone Detection Tools. IEEE Transactions
on Software Engineering 33, 9 (2007), 577–591.

[7] Eunjong Choi, Norihiro Yoshida, Raula Gaikovina Kula, and Katsuro Inoue. 2015.
What do practitioners ask about code clone? a preliminary investigation of stack
overflow. In Proceedings of the 9th International Workshop on Software Clones.
49–50.

[8] Jonathan Crussell, Clint Gibler, and Hao Chen. 2015. AnDarwin: Scalable Detec-
tion of Android Application Clones Based on Semantics. IEEE Transactions on
Mobile Computing 14, 10 (2015), 2007–2019.

[9] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. 1999. A language inde-
pendent approach for detecting duplicated code. In Proceedings of International
Conference on Software Maintenance. 109–118.

[10] Mark Gabel, Lingxiao Jiang, and Zhendong Su. 2008. Scalable detection of
semantic clones. In Proceedings of the 30th international conference on Software
engineering. 321–330.

[11] Nils Göde and Rainer Koschke. 2009. Incremental clone detection. In Proceedings
of the 13th European Conference on Software Maintenance and Reengineerin. 219–
228.

[12] ASE Group et al. 2006. Ijadataset 2.0.
[13] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.

Deckard: Scalable and accurate tree-based detection of code clones. In Proceedings
of the 29th International Conference on Software Engineering. 96–105.

[14] Toshihiro Kamiya. 2021. CCFinderX: An Interactive Code Clone Analysis Envi-
ronment. In Code Clone Analysis. Springer, 31–44.

[15] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: A
multilinguistic token-based code clone detection system for large scale source
code. IEEE Transactions on Software Engineering 28, 7 (2002), 654–670.

[16] Kostas A Kontogiannis, Renator DeMori, Ettore Merlo, Michael Galler, andMorris
Bernstein. 1996. Pattern matching for clone and concept detection. Automated
Software Engineering 3, 1 (1996), 77–108.

[17] Guanhua Li, Yijian Wu, Chanchal K Roy, Jun Sun, Xin Peng, Nanjie Zhan, Bin
Hu, and Jingyi Ma. 2020. SAGA: efficient and large-scale detection of near-miss
clones with GPU acceleration. In Proceedings of the 27th International Conference
on Software Analysis, Evolution and Reengineering. 272–283.

[18] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. 2006. CP-Miner: finding copy-paste
and related bugs in large-scale software code. IEEE Transactions on Software
Engineering 32, 3 (2006), 176–192. https://doi.org/10.1109/TSE.2006.28

[19] Chao Liu, Chen Chen, Jiawei Han, and Philip S Yu. 2006. GPLAG: detection of
software plagiarism by program dependence graph analysis. In Proceedings of
the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining. 872–881.

[20] L. Moonen. 2001. Generating robust parsers using island grammars. In Proceedings
of the Eighth Working Conference on Reverse Engineering. 13–22.

[21] Tariq Muhammad, Minhaz F. Zibran, Yosuke Yamamoto, and Chanchal K. Roy.
2013. Near-miss clone patterns in web applications: An empirical study with in-
dustrial systems. In Proceedings of the 26th IEEE Canadian Conference on Electrical
and Computer Engineering. 1–6.

[22] KawserWazedNafi, Tonny Shekha Kar, Banani Roy, Chanchal K. Roy, and KevinA.
Schneider. 2019. CLCDSA: Cross Language Code Clone Detection using Syntac-
tical Features and API Documentation. In Proceedings of the 34th International
Conference on Automated Software Engineering. 1026–1037.

[23] Yuta Nakamura, Eunjong Choi, Norihiro Yoshida, Shusuke Haruna, and Katsuro
Inoue. 2016. Towards Detection and Analysis of Interlanguage Clones for Multi-
lingual Web Applications. In Proceedings of the 23rd International Conference on
Software Analysis, Evolution, and Reengineering, Vol. 3. 17–18.

[24] Tung Thanh Nguyen, Hoan Anh Nguyen, Jafar M. Al-Kofahi, Nam H. Pham, and
Tien N. Nguyen. 2009. Scalable and incremental clone detection for evolving
software. In Proceedings of International Conference on Software Maintenance.
491–494.

[25] Daniel Perez and Shigeru Chiba. 2019. Cross-language clone detection by learning
over abstract syntax trees. In Proceedings of the 16th International Conference on
Mining Software Repositories. 518–528.

[26] Tom Preston-Werner. [n. d.]. Semantic versioning 2.0.0. https://semver.org/spec/
v2.0.0.html

[27] Damith C. Rajapakse and Stan Jarzabek. 2007. Using Server Pages to Unify
Clones in Web Applications: A Trade-Off Analysis. In Proceedings of the 29th
International Conference on Software Engineering. 116–126.

[28] Chanchal Kumar Roy and James R Cordy. 2007. A survey on software clone
detection research. Queen’s School of Computing TR 541, 115 (2007), 64–68.

[29] Chanchal K. Roy and James R. Cordy. 2008. NiCad: Accurate Detection of Near-
Miss Intentional Clones Using Flexible Pretty-Printing and Code Normalization.
In Proceedings of the 16th International Conference on Program Comprehension.
172–181. https://doi.org/10.1109/ICPC.2008.41

[30] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. 2009. Comparison and
evaluation of code clone detection techniques and tools: A qualitative approach.
Science of Computer Programming 74, 7 (2009), 470–495. https://doi.org/10.1016/
j.scico.2009.02.007

[31] Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu, Pierre Baldi, and Cristina V
Lopes. 2018. Oreo: Detection of clones in the twilight zone. In Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 354–365.

[32] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V.
Lopes. 2016. SourcererCC: Scaling Code Clone Detection to Big-Code. In Pro-
ceedings of the 38th International Conference on Software Engineering. 1157–1168.
https://doi.org/10.1145/2884781.2884877

[33] Yuichi Semura, Norihiro Yoshida, Eunjong Choi, and Katsuro Inoue. 2017. CCFind-
erSW: Clone Detection Tool with Flexible Multilingual Tokenization. In Proceed-
ings of the 24th Asia-Pacific Software Engineering Conference. 654–659.

[34] Yuichi Semura, Norihiro Yoshida, Eunjong Choi, and Katsuro Inoue. 2018.
Multilingual Detection of Code Clones Using ANTLR Grammar Definitions.
2018 25th Asia-Pacific Software Engineering Conference (APSEC) (2018), 673–677.
https://doi.org/10.1109/apsec.2018.00088

[35] Jeffrey Svajlenko and Chanchal K. Roy. 2015. Evaluating Clone Detection Tools
with BigCloneBench. In Proceedings of the 31st International Conference on Soft-
ware Maintenance and Evolution. 131–140. https://doi.org/10.1109/icsm.2015.
7332459

[36] Jeffrey Svajlenko and Chanchal K. Roy. 2016. BigCloneEval: A Clone Detection
Tool Evaluation Framework with BigCloneBench. In 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME). 596–600.

[37] Jeffrey Svajlenko and Chanchal Kumar Roy. 2017. Fast and flexible large-scale
clone detection with CloneWorks.. In Proceedings of the 39th International Con-
ference on Software Engineering Companion. 27–30.

[38] Jeffrey Svajlenko and Chanchal K. Roy. 2021. The Mutation and Injection Frame-
work: Evaluating Clone Detection Tools with Mutation Analysis. IEEE Transac-
tions on Software Engineering 47, 5 (2021), 1060–1087.

[39] Nikita Synytskyy, James R. Cordy, and Thomas R. Dean. 2003. Robust Multilingual
Parsing Using Island Grammars. In Proceedings of Conference of the Centre for
Advanced Studies on Collaborative Research. 266–278.

[40] Tijana Vislavski, Gordana Rakić, Nicolás Cardozo, and Zoran Budimac. 2018.
LICCA: A tool for cross-language clone detection. In 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER). 512–516.
https://doi.org/10.1109/SANER.2018.8330250

[41] Pengcheng Wang, Jeffrey Svajlenko, Yanzhao Wu, Yun Xu, and Chanchal K. Roy.
2018. CCAligner: a token based large-gap clone detector. In Proceedings of the
40th International Conference on Software Engineering. 1066–1077.

[42] Yueming Wu, Deqing Zou, Shihan Dou, Siru Yang, Wei Yang, Feng Cheng, Hong
Liang, and Hai Jin. 2020. SCDetector: software functional clone detection based
on semantic tokens analysis. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering. 821–833.

[43] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. 2019. A Novel Neural Source Code Representation Based on Abstract Syntax
Tree. In Proceedings of the 41st International Conference on Software Engineering.
783–794.

[44] Yin Zhang, Rong Jin, and Zhi-Hua Zhou. 2010. Understanding bag-of-words
model: a statistical framework. International Journal of Machine Learning and
Cybernetics 1, 1-4 (2010), 43–52.

[45] Gang Zhao and Jeff Huang. 2018. DeepSim: Deep Learning Code Functional
Similarity. In Proceedings of the 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
141–151.

470

